Combining Labels with a Multi-View VAE

NAACL-HLT, 2019-06-03

Alexander Hoyle University College London¹ Johns Hopkins University

Lawrence Wolf-Sonkin

Microsoft[®] Research Hanna Wallach Microsoft Research

Problem: annotators' schemata are different

Roger Ebert

Idea: combine annotations across sources

Aggregation increases coverage and reduces bias

...but can we aggregate consistently?

A generative story of reviewing

Roger Ebert

"Noisy Opinions"

Jay Sherman

This talk summarized in one slide

Combine disparate annotation schemes into one ...with generative modeling!

Merging Sentiment Lexica with a VAE

Sentiment lexica are also inconsistent

"good"

SentiWordNet

[0.672, 0.0]

Hu-Liu

Positive

MPQA

Positive

General Inquirer

Positive

SenticNet 5

0.849

VADER

[0, 0, 0, 0, 0, 0, 4, 4, 1, 1]

Generating labels is an imperfect process

Suppose there exists a true, unobserved label

One latent variable per datapoint

Problem: observations don't have consistent scales

Solution: lexicon-specific emission distributions

$$z^w \sim \text{Dir}(\alpha^w)$$

$$\rho_d^w = f(\mathbf{z}^w; \theta_d)$$

$$x_d^w \sim P_d(x_d^w | \rho_d^w)$$

Individual distributions are schema-dependent

SentiWordNet SenticNet 5 **MPQA** $\mathcal{N}(\boldsymbol{\rho}, 0.01 \, \boldsymbol{I})$ $Bern(\rho)$ $\mathcal{N}(\rho_{_{\mathcal{U}}}, \rho_{_{\mathcal{O}}})$ Hu-Liu **General Inquirer VADER** $Bern(\rho)$ $Mult(\rho)$ $Bern(\rho)$

Encoder approximates intractable posterior P(Z|X)

Distribution over latent representation is interpretable

Evaluation

Evaluation task: predict sentence sentiment

$$oldsymbol{\mathcal{X}}_i$$
 $oldsymbol{\mathcal{Y}}_i$ "The movie was good" Pos

SenticNet 0.94 0.84 -
$$0.85 - \frac{1}{4} \sum -0.87 - 1$$

Our representation outperforms individual lexica

Performance owed to better representation in addition to greater coverage

For what other kinds of annotation schemes could this technique be useful?

Thanks

- Co-authors: Lawrence Wolf-Sonkin, Hanna Wallach,
 Ryan Cotterell, and Isabelle Augenstein
- University of Copenhagen for travel funding

Fin