Combining Labels with a
Multi-View VAE

NAACL-HLT, 2019-06-03

L =X
o W
Alexander Hoyle Lawrence Wolf-Sonkin

University College London' Johns Hopkins University

Microsoft-

Research w o
Hanna Wallach Ryan Cotterell Isabelle Augenstein
Microsoft Research University of Cambridge?  University of Copenhagen

"Now at University of Maryland. “Moving to ETH Zurich. 1



Problem: annotators’' schemata are different
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ldea: combine annotations across sources
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Aggregation increases coverage and reduces bias

...but can we aggregate consistently?
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A generative story of reviewing
“True review”
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This talk summarized in one slide

Combine disparate annotation schemes into one

...with generative modeling!



Merging Sentiment Lexica with a VAE



Sentiment lexica are also inconsistent
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Generating labels is an imperfect process

Suppose there exists a true, unobserved label
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One latent variable per datapoint
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Problem: observations don’t have consistent scales

“peppy”
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Solution: lexicon-specific emission distributions
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Individual distributions are schema-dependent
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Encoder approximates intractable posterior P(Z|X)
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Distribution over latent representation is
interpretable

“Superb” “Terrible” “Portuguese”
6.00, 1.00, 1.00 1.00, 1.00, 6.99 1.07, 1.89, 1.05
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Evaluation
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Evaluation task: predict sentence sentiment
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Our representation outperforms individual
lexica
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Performance owed to better representation in
addition to greater coverage
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For what other kinds of annotation
schemes could this technique be
useful?
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Thanks
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